Lucie Montuelle

Publications
Modèles de production d'énergie éolienne et prévision
L. Montuelle, A. Fischer, M. Mougeot, D. Picard, Journées de la Statistique proceeding, 2017.
[bib] | [proceeding]
@InProceedings{Fischer_Montuelle_Mougeot_Picard_JDS2017,
author = {Montuelle, Lucie and Fischer, A. and Mougeot, M. and Picard, D.},
title = {{Mod{\`e}les de production d' {\'e}nergie {\'e}olienne et pr{\'e}vision}},
booktitle = {{49e Journ{\'e}es de Statistique}},
year = {2017},
address = {Avignon, France},
month = {June},
organization = {{SFdS}},
keywords = {production {\'e}lectrique {\'e}olienne, mod{\`e}les de r{\'e}gression, pr{\'e}vision, data mining, for{\^e}ts al{\'e}atoires, bagging.}}
Statistical learning for wind power : a modeling and stability study towards forecasting
A. Fischer, L. Montuelle, M. Mougeot, D. Picard, Wind Energy, 2017.
[bib] | [Hal] | [journal]
@Article{Fischer_Montuelle_Mougeot_Picard,
author = {Fischer, Aur{\'e}lie and Montuelle, Lucie and Mougeot, Mathilde and Picard, Dominique},
title = {Statistical learning for wind power: A modeling and stability study towards forecasting},
journal = {Wind Energy},
year = {2017},
volume = {20},
pages = {2037--2047},
doi = {10.1002/we.2139},
hal_id = {hal-01373429},
keywords = {bagging, data mining, forecasting, modeling, random forests, stability, wind power},
url = {http://dx.doi.org/10.1002/we.2139}}
PAC-Bayesian aggregation of affine estimators
L. Montuelle, E. Le Pennec, Nonparametric Statistics, 2018.
[bib] | [pdf] | [journal]
@InProceedings{10.1007/978-3-319-96941-1_9,
author ={Montuelle, L. and Pennec, E. Le},
editor ={Bertail, Patrice and Blanke, Delphine and Cornillon, Pierre-Andr{\'e} and Matzner-L{\o}ber, Eric},
title ={PAC-Bayesian Aggregation of Affine Estimators},
booktitle ={Nonparametric Statistics},
year ={2018},
publisher ={Springer International Publishing},
address ={Cham},
pages ={133--144},
isbn ={978-3-319-96941-1}}
Mixture of Gaussian regressions model with logistic weights, a penalized maximum likelihood approach
L. Montuelle, E. Le Pennec, Electronic Journal of Statistics, 2014.
[bib] | [journal]
@Article{montuelle2014,
author = {Montuelle, L. and Le Pennec, E.},
doi = {10.1214/14-EJS939},
fjournal = {Electronic Journal of Statistics},
journal = {Electron. J. Statist.},
number = {1},
pages = {1661--1695},
publisher = {The Institute of Mathematical Statistics and the Bernoulli Society},
title = {Mixture of Gaussian regressions model with logistic weights, a penalized maximum likelihood approach},
url = {https://doi.org/10.1214/14-EJS939},
volume = {8},
year = {2014} }
Agrégation PAC-Bayésienne d'estimateurs par projection
L. Montuelle, E. Le Pennec, Journées de la Statistique proceeding, 2014.
[bib] | [proceeding]
@InProceedings{montuelle:hal-01097173,
author = {Montuelle, Lucie and Le Pennec, Erwan},
title = {{Agr{\'e}gation PAC-bay{\'e}sienne d'estimateurs par projection}},
booktitle = {{46e Journ{\'e}es de Statistique}},
year = {2014},
month = {June},
address = {Rennes, France},
organization = {{SFDS}},
url = {https://hal.inria.fr/hal-01097173},
keywords = {r{\'e}gression ; in{\'e}galit{\'e} oracle ; Agr{\'e}gation {\`a} poids exponentiels},
hal_id = {hal-01097173} }
Régression gaussienne à poids logistiques et maximum de vraisemblance pénalisé
L. Montuelle, E. Le Pennec, Journées de la Statistique proceeding, 2013.
[bib] | [proceeding]
@InProceedings{montuelle:hal-00921524,
author = {Montuelle, Lucie and Le Pennec, Erwan},
title = {{R{\'e}gression gaussienne {\`a} poids logistiques et maximum de vraisemblance p{\'e}nalis{\'e}}},
booktitle = {{45e Journ{\'e}es de Statistique}},
year = {2013},
month = {May},
address = {Toulouse, France},
organization = {{SFDS}},
url = {https://hal.inria.fr/hal-00921524},
hal_id = {hal-00921524} }
Gaussian Mixture Regression model with logistic weights, a penalized maximum likelihood approach
L. Montuelle, E. Le Pennec, S.X. Cohen, INRIA Research Report no. 8281, 2013.
[bib] | [Hal]
@techreport{montuelle:hal-00809735,
author = {Montuelle, Lucie and Le Pennec, Erwan and Cohen, Serge},
title = {{Gaussian Mixture Regression model with logistic weights, a penalized maximum likelihood approach}},
type = {Research report},
number = {RR-8281},
year = {2013},
month = {April},
keywords = {Conditional density estimation ; Gaussian Mixture Regression ; Model selection},
url = {https://hal.inria.fr/hal-00809735},
hal_id = {hal-00809735} }

PhD thesis
Inégalités d'oracle et mélange
[bib] | [Tel]
@PhdThesis{montuelle:tel-01109103,
author = {Montuelle, Lucie},
title = {{Oracle inequalities and mixtures}},
school = {{Universit{\'e} Paris-Sud - Paris XI}},
type = {phdthesis},
year = {2014},
month = {December},
number = {2014PA112364},
keywords = { exponential weight ; penalization ; model selection ; learning ; maximum likelihood ; aggregation ; mixture model ; Oracle inequality ; maximum de vraisemblance ; agr{\'e}gation ; mod{\`e}les de m{\'e}lange ; poids exponentiels ; apprentissage ; s{\'e}lection de mod{\`e}le ; p{\'e}nalisation ; In{\'e}galit{\'e} d’oracle},
url = {https://tel.archives-ouvertes.fr/tel-01178833},
hal_id = {tel-01178833} }
Supervised by Erwan Le Pennec (Ecole Polytechnique)
Defense on December 4th, 2014 at the Université Paris Sud, Orsay.
Reviewers: A. Dalalyan and G. Govaert
Examiners: P. Massart (president), O. Catoni, G. Celeux, S.X. Cohen.